The percolation threshold (PT) of any polymer/particulate carbon composite depends on the processing, the dispersed state of the filler, the matrix used and the morphology attained. Sonication technique was used to make PA6/G and PA6/GNP composites employing in situ polymerisation, after which their electrical conductivity behaviours were investigated. While overhead stirring and horn sonication were used to distribute and disperse the carbon fillers, the composites were made in 2 streams 40/10 and 20/20. The 40/10 stream implies that while dispersing the carbon fillers in PA6 monomer, 40% amplitude of sonication was applied for 10 minutes whereas the 20/20 stream implies 20% amplitude of sonication for 20 minutes. In both streams, the dispersing strain imparted on the monomer/carbon mixture was 400 in magnitude. Purely ohmic electrical conductivity behaviour was attained at 9.75 G wt. % for IG 40/10 system. For composites in the IG 20/20 system, same was attained at 10.00 G wt. %. Electrical conductivity sufficient for electrostatic discharge applications was achieved above 15 G wt. % in the IG 40/10 system. Using the power law percolation theory, percolation threshold was attained at 9.7 G wt. % loading in IG 40/10 system, while same was attained at 7.6 G wt. % loading in IG 20/20 system. For the GNP based systems, percolation threshold occurred at 5.2 GNP wt. % in the INP 40/10 system whereas same occurred at 7.4 GNP wt. % in the IG 20/20 system.
Real Time Impact Factor:
Pending
Author Name: Umar M., Ofem M. I., Anwar A. S. and Usman M. U.
URL: View PDF
Keywords: Electrical-conductivity, Graphite, Percolation-threshold, Amplitude, Sonication
ISSN: 2734-259X
EISSN: 2734-2603
EOI/DOI: 10.36263/nijest.2021.01.0251
Add Citation
Views: 1