News

citefactor-journal-indexing

Economic and Environmental Modeling of a Photovoltaic-Wind-Grid Hybrid Power System in Hot Arid Australia

I ncreased concern about energy crisis and environmental issues has revitalized interest in the application of renewable energy technologies . For ensuring steady and continuous electricity generations, a hybrid power system (HPS) including more than one renewable energy elements is introduced . In this paper, environmental and economic analys e s are used to discuss the sustainability of a HPS . A n investigation is made on small - scale operations of 100kWh per day HPS as a grid - assisted power generation consisting of solar (photovoltaic) and wind energy. A comparison is drawn among the different configurations of a grid - connected HPS operation focusing on environmental and economic impacts. Emissions and the renewable energ y generation fraction (RF) of total energy consumption are calculated as the main environmental indicator. Costs including net present cost (NPC) and cost of energy (COE) are calculated for economic evaluation. To simulate long - term continuous implementati on of the HPS , the hourly mean global solar radiation and wind speed data of 2007, from Alice Spring ( 23.70 S ? , 133.88 E ? ) of Australia, are used as an example of a typical hot arid climate. The monthly solar exposure b etween 13.31 and 21.3 2 MJ m day and mean wind speed of 7.13 / in 2007 is considered for simulation The Micropower Optimization Model software HOMER developed by the National Renewable Energy Laboratory, USA is used for simulation. It is found that, for Alice Spring arid climates, the optimum results of HPS show a 64.3% reduction of emissions including 2 CO , 2 SO , and x NO . Renewable fraction of the optimized system is 54%. It is also found that the HPS has benefits of cost saving. The reduced NPC and COE are only equal to about 85.3% of energy consumption from standard grid. In addition, through a set of sensitivity analysis, it is found that the wind speed has more ef fects on the environmental and economic performance of a HPS under the specific climate.



Real Time Impact Factor: 1.33333

Author Name:

URL: View PDF

Keywords: E nvironment; E conomy; H ot A rid Australia ; Hybrid Power S ystem

ISSN: 1923-7308

EISSN: 1923-7316


EOI/DOI: 10.5383/ijtee.01.01.003


Add Citation Views: 4826














Search


Advance Search

Get Eoi for your journal/conference/thesis paper.

Note: Get EOI for Journal/Conference/ Thesis paper.
(contact: eoi@citefactor.org).

citefactor-paper-indexing

Share With Us












Directory Indexing of International Research Journals